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When product quality characteristics are evaluated and assigned to exclusive cate-
gories, measurement errors (misclassification of products) always exist unless a
perfect measurement system is used to identify the categories. In run-to-run (R2R)
process control, a categorical controller has been developed for process adjustments
with categorical variables. However, if process outputs are misclassified, an adjust-
ment bias will be introduced by the controller. In this study, an improved categorical
R2R controller that utilizes the misclassification probabilities to decrease process
deviation is proposed. Simulation results show that the proposed controller exhibits
better performance when misclassification exists. Copyright © 2008 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Run-to-run (R2R) control refers to the actions taken to adjust controllable variables or process inputs
in a new run to maintain process outputs close to the target1,2. R2R control algorithms are especially
important for high-tech manufacturing industries, such as semiconductor manufacturing. Versatile

R2R control algorithms have been developed3–10. Among others, the EWMA controller, the double EWMA
controller, the self-tuning controller and various extensions of these controllers have become prevalent in
industrial practice.
The performance of R2R controllers has been studied extensively by Del Castillo and Hurwitz1 under the

assumption that process outputs can bemeasured on a numerical scale to make process adjustments. However,
this assumption is often violated in practice when certain constraints limit the availability of numerical
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information. For instance, a high-yield process cannot be stopped but measurement procedures may take a
long time; some quality characteristics are intrinsically inaccurate and cannot be expressed by numerical
variables. Under such circumstances, qualitative observations (categorical data) can be alternatively collected
in a fast manner by sacrificing accuracy or by accounting for intrinsic quality properties. Therefore, ordered
categorical variables also called ordinal variables, can be used to characterize process status observations
and be considered to assist in process adjustment. However, all traditional controllers are not applicable
based on the categorical variables in R2R processes.
A categorical R2R controller for process adjustment based on categorical observations was recently

proposed by Wang and Tsung11. They considered the deep reactive ion etching (DRIE) process and applied
their categorical R2R controller to this process. The DRIE process is a critical step in semiconductor
manufacturing in forming high aspect-ratio sub-micron pillars with vertical sidewalls; the profile of the
sidewall is a critical quality parameter for the process. In practice, each sidewall may be over-etched or
under-etched. Accordingly, each wafer is classified by qualified operators into three categories including
‘negative’, ‘normal’ and ‘positive’, and the exact angle of the sidewall is not measured. A poorly adjusted
DRIE process will produce wafers with unsatisfactory profiles12; thus, reliable product status information
and effective control algorithms are the keys to improving the process performance. Although the consistency
of the measurement system is assumed to be satisfactory by Wang and Tsung11, it is impossible to classify
all products perfectly and accurately. Classification error is the major problem that may deteriorate the
performance of the categorical R2R controller.
Misclassification occurs when a product is classified into the wrong category. Misclassification can be

observed inmany fields that involve categorical variables, such as epidemiology and engineering applications.
Broad research results show that misclassification can lead to seriously biased estimates of the relationship
between response and explanatory variables13–15. Birkett16 studied the effect of misclassification of poly-
chotomous exposure variables on odds ratio estimation and pointed out that the impact of misclassification
of multinomial variables is more complex than the impact of misclassification of binary variables.
Research efforts have been expended on designing methods to estimate misclassification probabilities

(MP), which are necessary for correcting the bias introduced by ignoring the misclassification issue. One
traditional treatment is double sampling17–19, in which a perfect device or measurement system is used to
obtain error-free results and an ordinary device or measurement system is used to obtain practical results.
These results are then combined to estimate the MP. The Bayesian approach is another popular method
used to estimate the unknown probabilities when an infallible measurement system is unavailable or too
expensive20. In this study, we provide concise guidelines to use the Bayesian method to estimate MP.
High misclassification rates in R2R process adjustment with categorical variables are intuitively negative.

If the output truly belongs to the target category, there should be no adjustment made to the controllable
variables. However, if this output is incorrectly classified into any other category, the controllable variables
will be wrongly adjusted and, consequently, the process output will deviate away from the target. Little
research has been performed on quantifying the impact of misclassification in R2R process adjustment.
In this paper, we propose an improved categorical R2R controller to decrease the impact of misclassifi-

cation of categorical observations and improve process control performance. The remainder of this paper is
organized as follows. In Section 2, the process model for categorical variables is introduced. Following that,
the improved categorical R2R controller is developed and the difference between the categorical R2R
controller proposed byWang and Tsung11 and the improved one is demonstrated in Section 3. A design guide-
line is presented for the practitioners in Section 4. In Section 5, the improved categorical controller is applied
to the DRIE process described by Wang and Tsung11. The conclusion of this paper is given in Section 6.

2. PROCESS MODELING

According to Wang and Tsung11 and the references therein, a linear model is sufficient to characterize a
single-input–single-output R2R process, upon which wemay further develop and test new control algorithms.
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The linear model is shown as follows:

yt =�+�ut−1+dt (1)

where yt is the process output at time t . ut−1 is the process input or the setting of the controllable factor
at time t−1. dt , which equals dt−1+εt −�εt−1, is process noise and follows an IMA(1,1) model, where
εt ∼N (0,1) is a white noise series.
The numerical output, yt , is unavailable in this process. Therefore, we model it as a latent variable. Let Yt

be the categorical observation that is collected after a wafer is processed at step t . The relationship between
Yt and yt is determined by the following logical function:

Yt = j if � j−1�yt<� j , j =1, . . . , J (2)

where J is the number of output categories and � j , j =1, . . . , J , are dividing parameters or cutoff points
that divide the output space on a numerical scale into J intervals. Therefore, each yt will be classified into
one of the categories according to the above equation.
The categorical R2R controller proposed by Wang and Tsung11, which was derived based on the above

model, is expressed as follows and is called the old controller in the following sections:

�ut =− (E(yt/Yt = j)−T )(1−�)

�
=− ((� j−1+� j )/2−T )(1−�)

�
(3)

where j =1,2,3 and T is the target value of the process outputs.
The details of the derivation of the control action are presented by Wang and Tsung11.

3. PROCESS ADJUSTMENT WITH MISCLASSIFICATION

In the above categorical R2R controller, the observed category is assumed to be the correct category to which
the output truly belongs. In practice, due to the existence of measurement errors, we can assign an observation
to the correct category only with a certain probability. In the following, we model the classification in a
probabilistic way and improve the old categorical controller by considering misclassification errors.
In general, the optimal control action obtained at each step is a function of the observed categorical

response variable. It is expressed as follows:

�u∗
t = f (E(yt |Y ∗

t )) (4)

where Y ∗
t is the observed category into which the operators classify the t th process output. It should be

noted that Y ∗
t contains measurement errors and may not exactly follow the classification rule shown above.

We define Pi as the categorical probability that the process output truly belonging to the i th category and
P∗
i as the probability that the operators classify the process output into the i th category. In addition, we use

Ri j to denote the MP with which the process output is classified into the j th category by an operator when
it truly belongs to the i th category. These definitions are formally written as follows:

Pi = Pr(Yt = i) (5)

P∗
i = Pr(Y ∗

t = i) (6)

Ri j = Pr(Y ∗
t = j/Yt = i) (7)
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The following is the MP matrix, R:

R=

⎛
⎜⎜⎜⎜⎝

R11 . . . R1m

...
. . .

...

Rm1 · · · Rmm

⎞
⎟⎟⎟⎟⎠

m×m

(8)

Therefore, the sum of the entries in each row of the above matrix equals 1. That is,
∑m

j=1 Ri j =1. It also

follows that
∑m

i=1 Pi =1 and
∑m

i=1 P
∗
i =1. As was shown by Tzavidis and Lin19, the misclassification

model can be expressed as follows:

P∗
j =

m∑
i=1

Pr(Y ∗
t = j/Yt = i)Pr(Yt = i)=

m∑
i=1

Ri j Pi (9)

According to the Bayes theorem, the calibration probability can be denoted as C ji with which the process
output truly belongs to the i th category when it is classified into the j th category19:

C ji =Pr(Yt = i/Y ∗
t = j)=Pr(Y ∗

t = j/Yt = i)
Pr(Yt = i)

Pr(Y ∗
t = j)

= Ri j Pi
P∗
j

(10)

Based on the calibration probability equation, the item E(yt |Y ∗
t ) in Equation (4) can be expressed as:

E(yt |Y ∗
t = j)=

J∑
i=1

Pr(Yt = i/Y ∗
t = j)E(yt/Yt = i)=

J∑
i=1

C ji
�i−1+�i

2
(11)

where j =1, . . . , J .
Therefore, we modify the old R2R categorical controller based on the newly defined Y ∗

t as follows:

�u∗
t = − (E(yt/Y ∗

t = j)−T )(1−�)

�

= �E(yt |Y ∗
t = j)−� (12)

where �=−1−�/�,�=�T .
The improved controller takes misclassification into consideration and models real scenarios that suffer

from misclassification in handling categorical observations. It is also clear that when the misclassification
probability is zero, Equation (12) reduces to Equation (3). Therefore, when there is no misclassification
error, the new controller is equivalent to the old one. In the following sections, we study the performance
of the improved categorical controller and compare it with the old one.

4. DESIGN GUIDELINES

In the above section, we described the new categorical controller. In this section, we implement the new
controller with the DRIE process presented by Wang and Tsung11 via simulation studies. The output space
is divided into three zones. The values of the model and cutoff parameters, �=(�,�,�,�0,�1,�2,�3), are
taken from Wang and Tsung11. The estimation procedure for these parameters is described in that paper.
Specifically, �=(91.7,−1.8,0.6,87,89.14,90.59,93). In addition, the initial setting of the controllable
factor, u0, is set to 1.
Apart from the above parameters, the categorical probabilities and MP are also necessary for the new

controller. For the DRIE process example, the standard deviation, �, is known and equal to 1, and the mean
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is the target, T =90. Therefore, those probabilities are obtained and integrated into the new controller as
follows:
Step 1: The categorical probabilities are calculated based on Equations (2) and (5). In this example, we

have P={0.195,0.527,0.278}.
Step 2: According to the definition of MP, we assume that the probability that any product is wrongly

classified into non-adjacent categories is zero. This assumption is reasonable for ordered categorical obser-
vations because the output is less likely to be classified into the category that is not adjacent to the true
category. The misclassification matrix R can be simplified as follows:

R=
⎛
⎜⎝
R11 1−R11 0

R21 R22 R23

0 1−R33 R33

⎞
⎟⎠

Based on the known standard deviation, the ratio between R21 and R23 can be computed approximately for
this example as follows:

R21

R23
= Pr(�1�y�T )

Pr(T�y��2)
≈3/2

Therefore, the misclassification matrix, R, can be further simplified to

R=
⎛
⎜⎝

R11 1−R11 0

3(1−R22)/5 R22 2(1−R22)/5

0 1−R33 R33

⎞
⎟⎠ (13)

When the main diagonal probabilities are known, the above misclassification matrix is also known. In the
following simulation, the MP are assumed to be known:
Step 3: Calculate the calibration probabilities based on Equation (10).
Step 4: Calculate the adjustment magnitude based on Equations (11) and (12).
Step 5: Adjust the controllable variables according to the new controller result from Step 4.
Although the following simulation is implemented according to the above steps, in real processes, the

procedure is not applicable because these probabilities are usually unknown. Swartz et al.14 developed the
Bayesian model combined with Gibbs sampling to estimate the probability parameters. A brief introduction
of the method is given to demonstrate the estimation of the probabilities in this example.
First, we consider that N products are drawn and classified by operators randomly, and we let P=

(P1, P2, P3) and Ri =(Ri1, Ri2, Ri3), i=1,2,3. Let Y ∗ =(Y ∗
1 , . . . ,Y ∗

N ) and Y =(Y1, . . . ,YN ) be two vectors
of observed and true values, respectively. In addition, the true category, Yt , is also unknown, which can be
treated as a latent categorical variable.

4.1. Prior distributions

It is reasonable to assume that prior distributions for probabilities are Dirichlet distributions, which are
conjugate to multinomial distribution. The prior distributions are described as follows:

P = (P1, P2, P3)∼Dir(a)

Ri = (Ri1, Ri2, Ri3)∼Dir(bi)

a = (a1,a2,a3), bi =(bi1,bi2,bi3)

where ai>0 and bi j>0, i, j =1,2,3. Under practical situations, it is less likely that one product will be
classified into one category that is far away from the true category using the good but imperfect measurement
system for the ordered categorical variable. Therefore, for any i, Ri1<,. . . ,<Ri,i−1<Rii>Ri,i+1>,. . . ,>Ri3.
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4.2. Full conditional distributions

The conditional probability function of the latent categorical variable is the same as the calibration probability
(Equation (10)). The conditional distributions for P and Ri are also Dirichlet distributions. Therefore,

f (P/R1, R2, R3,Y,Y ∗) = f (P/Y )∼Dir(a∗)
f (Ri/P,Y,Y ∗) = f (Ri/Y,Y ∗)

∼Dir(b∗
i )I (Ri1<,. . . ,<Ri,i−1<Rii>Ri,i+1>,. . . ,>Ri3)

a∗ =
(
a1+

N∑
t=1

I (Yt =1), . . . ,a3+
N∑
t=1

I (Yt =3)

)

b∗
i =

(
bi1+

N∑
t=1

I (Yt = i)I (Y ∗
t =1), . . . ,bi3+

N∑
t=1

I (Yt = i)I (Y ∗
t =3)

)
(14)

where the function I (A) equals 1 if A is true, otherwise 0. The full conditional distribution for Ri is a
truncated Dirichlet distribution for i=1,2,3.

4.3. Gibbs sampling

Given the prior distributions that can be determined by the experience and knowledge about the process, a
value for each unknown parameter is sampled from its full conditional distribution at one time. The steps
for implementing Gibbs sampling with the latent categorical variable are outlined as follows:

• Sample Y (t) from Equation (10);
• Sample P(t) from f (P/R(t−1)

1 , R(t−1)
2 , R(t−1)

3 ,Y t ,Y ∗);
• Sample R(t)

i from f (Ri/P(t),Y t ,Y ∗);
where the superscript (t) indicates the t th estimate based on other parameters and observations up to step t .
According to these steps, all parameters can be updated recursively. After the convergence is reached,

estimates of the mean and standard deviation of these parameters can be obtained. Then, we can return to
Steps 3 and 4 to implement the new categorical controller.

5. SIMULATION STUDY

In this section, we investigate the performance of the proposed controller by calculating the mean square
error (MSE) of the process outputs to evaluate the deviations from the target. The MSE is defined as follows:

MSE=E((yt −T )2) (15)

In reality, due to the practical constraints discussed in Section 1, it is infeasible for us to run a real process
to test the performance of this new controller and compare its MSE with the old controller, nor can we apply
these two controllers to one process simultaneously. For example, the devices exactly measuring the wafers
that are etched during the DRIE process are kept in a clean room and the whole measurement process is
time consuming. We cannot waste many wafers to determine the controller’s performance. Therefore, we
use Monte Carlo simulations to generate samples based on the real context and the process model to study
the performance of the new categorical controller.
In the following simulations, each simulated process is run for 200 steps and repeated 100 times for each

MP in order to use the average of the MSEs to evaluate the performance of the controllers. Without loss of
generality, the seed for generating random numbers is set to 2, and the MP for each category is assumed to
be equal to facilitate the calculation and comparison.
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Before investigating the performance of the new improved controller (12), we first study the performance
and stability of the old categorical R2R controller proposed by Wang and Tsung11 in the case where the
misclassification exists, because this old controller has been shown to be stable with different uncertainties
including parameter estimates uncertainty, disturbance model and so on. In this section, the old controller
is used as a benchmark for comparison with the new controller.
The process is simulated under different MP with the old controller. In Figure 1, we clearly see that the

MSE for the process with the old controller in the case where the misclassification exists is larger than the
opposite case where there is no misclassification (the dashed line). Moreover, when the misclassification
probability is larger, the MSE increases quickly, and the old controller performs poorly. As shown in Table I,

Figure 1. MSE of the old categorical controller under different misclassification probabilities

Table I. MSE comparison under different misclassification probabilities

MP MSE without misclassification MSE with old controller

0.00 1.092 1.092
0.05 1.092 1.126
0.10 1.092 1.154
0.15 1.092 1.180
0.20 1.092 1.215
0.25 1.092 1.263
0.30 1.092 1.320
0.35 1.092 1.376
0.40 1.092 1.452
0.45 1.092 1.512
0.50 1.092 1.610
0.55 1.092 1.735
0.60 1.092 1.863
0.65 1.092 2.144
0.70 1.092 2.539
0.75 1.092 3.215
0.80 1.092 4.456
0.85 1.092 7.060
0.90 1.092 13.682
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Figure 2. MSE comparison of the new controller and the old controller

Table II. MSE comparison of the new controller and the old controller

MP MSE without misclassification MSE with old controller MSE with new controller

0.00 1.092 1.092 1.092
0.05 1.092 1.126 1.107
0.10 1.092 1.154 1.124
0.15 1.092 1.180 1.149
0.20 1.092 1.215 1.184
0.25 1.092 1.263 1.231
0.30 1.092 1.320 1.288
0.35 1.092 1.376 1.379
0.40 1.092 1.452 1.440
0.45 1.092 1.512 1.610
0.50 1.092 1.610 1.830

the same conclusion can be reached that the old controller’s performance becomes worse when there is
misclassification.
As shown in Figure 2, the range of the studied MP varies from 0 to 0.5, and the dot–dashed line denotes

the MSE of the improved R2R categorical controller. We can see that the average MSE in the process
adjusted by the new R2R categorical controller is smaller than that with the old categorical controller under
different MP unless the probability is larger than approximately 0.35. This means that when the probability
that outputs are classified into their true categories is smaller than 0.65, both controllers cannot maintain
outputs close to the target effectively. Careful investigation reveals that the new controller suggests more
cautious adjustment when the MP is larger than 0.35. However, when the MP is smaller than 0.35, the
new controller is always superior to the old one. Table II shows the complete data set corresponding to
Figure 2.
The normal distribution curves in Figure 3 are generated by 500 simulated samples with the new controller

and the old controller when the MP is equal to 0.2. As shown in Figure 3, the mean of the outputs with the
new controller is much closer to the target 90 than that with the old controller. In addition, the probability
between the two cutoff points with the new controller is larger than that of the old one. Therefore, the
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Figure 3. Normal distribution comparison

number of outputs in the second category (good outputs) with the new controller is larger than that of the
old one.

6. CONCLUSION

In some practical scenarios, only categorical observations are available, and it is common that misclassi-
fication exists when the measurement system is not infallible, especially when the system classifying the
outputs into certain categories relies on human operators. This paper proposes a new improved categorical
R2R controller to reduce the effect of misclassification on the process and make the process output close to
the target.
Simulation studies show that misclassification results in larger deviations of the process outputs from

the target value when the MP increases, and the new improved categorical controller, compared with the
old categorical controller, can significantly decrease the deviation when the MP is not too large (smaller
than 0.35 in the case we studied). Because a measurement system with larger MP cannot be acceptable in
practice, the new categorical controller should be useful in real applications.
This paper investigates the performance of the new controller based on the exactly known parameters

including the categorical probabilities and the MP. However, in reality, these parameters are unknown.
Although the Bayesian method to estimate these parameters has been described, we do not use the estimates
to study the performance of the proposed controller. The performance and stability of the new improved
R2R categorical controller with unknown parameters are interesting topics for future research.
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